

Modification of the Data Handling to

Grid-Enable Reinsurance Natural
Catastrophe Calculations

Internship Report

by

Daniel Dönni
(0170426)

Submitted to the
Computer Science Department (IFI)

University of Zurich

In Partial Fulfillment of the Requirements for the
Diploma Degree in Computer Science

Supervisors

Dr. Wibke Sudholt
Institute of Organic Chemistry (OCI)

University of Zurich

and

Dr. Burkhard Stiller
Computer Science Department (IFI)

University of Zurich

November 2007

 2

Table of Contents

1. Introduction ... 3
2. Project Description ... 4

2.1. Background... 4
2.2. History... 4
2.3. Portfolio Tree... 4
2.4. Current Architecture ... 5

2.4.1. Client Tier ... 5
2.4.2. Server Tier... 5
2.4.3. Database Tier.. 5
2.4.4. Processes ... 5

2.5. Prospective Architecture .. 6
2.5.1. Client and Database Tier .. 6
2.5.2. Server Tier... 6
2.5.3. Grid Tier.. 7

3. Goal... 8
3.1. Query Isolation .. 8
3.2. Query Optimization .. 8

4. Implementation ... 9
4.1. Query Isolation .. 9
4.2. Query Optimization .. 9

4.2.1. The New Persistence Layer.. 9
4.2.2. AbstractRetriever ... 10
4.2.3. Usage.. 10
4.2.4. Functional Correctness ... 11

5. Evaluation .. 13
5.1. Expectations... 13
5.2. Experimental Results after Query Isolation .. 14

5.2.1. Rating... 14
5.2.2. Rating Details ... 14
5.2.3. File Sizes.. 15
5.2.4. Database Throughput ... 16

5.3. Experimental Results With The New Persistence Layer ... 16
5.3.1. Data Retrieval ... 16
5.3.2. Rating... 17
5.3.3. Overall Processing Time... 18

5.4. Query Analysis ... 19
6. Conclusion.. 21
7. Appendix .. 22

7.1. Settings .. 22
7.2. Queries .. 22

8. Bibliography ... 24

 3

1. Introduction
Moore’s Law states that the number of transistors on a computer chip doubles every
other year [1]. Although the original wording was altered and interpretations changed in
the course of time [2], most computer scientists still consider it to be true today. The
increase in computing power rendered many applications possible that could not have
been realized a couple of years ago.
Despite this rapid growth there are still countless applications in academia and industry
that require computing power, processing speed, or data storage that go far beyond the
one provided by a single computer. These challenges can only be mastered by deploying
supercomputers equipped with numerous processors or by aggregating resources of
many individual standard machines.
The two major resource aggregation concepts are known as Cluster Computing and Grid
Computing. Computer clusters focus on bundling resources of dedicated machines that
typically reside at one single location. Conversely, grid systems seek to combine
distributed resources, which may not only traverse geographical but also organizational
boundaries.
The type of system is dictated by application characteristics (e.g. process interdepen-
dencies) as well as hard- and software availability and accessibility. Swiss Re and
University of Zurich jointly work on the project described in this report aspiring to find
out whether and if so to what extent the cluster-like setup at Swiss Re can be adapted to
a grid setup.
This report is organized as follows: Chapter 2 outlines the project including history,
current status, and future prospects. The task I had to accomplish during the internship
is defined in Chapter 3 and followed by a discussion of vital implementation details in
Chapter 4. The results are presented in Chapter 5. Finally, Chapter 6 summarizes the
findings, draws conclusions, and outlines areas of future work.

 4

2. Project Description
This chapter outlines the NatCat project, the one I dealt with during my internship. This
chapter briefly summarizes the project’s background and history, and outlines its current
and prospective architecture.

2.1. Background
NatCat is a system that seeks to predict the financial losses arising from natural
catastrophes, such as earthquakes, tropical cyclones, floods, and windstorms [4]. The
software is developed, maintained, and used at Swiss Re, one of the world’s largest
reinsurance companies. Together with associated test data, it has been provided to the
Baldridge Group at the University of Zurich within a collaborative research project
running since September 2005. The present internship is part of this project.

2.2. History
Originally, NatCat used to be a single-computer application [3]. Due to the development
of new business areas [4], the growing demand for natural disaster insurance products [4]
and the application’s popularity at Swiss Re, it evolved into a large and complex system.
The system currently runs on a small computer cluster at Swiss Re and on a similar setup
at the University, which allows running several tasks at the same time. As part of the
collaboration project, distributed versions of the code were developed. These split tasks
into partial jobs, which can run in parallel on the different machines and thus increase
processing performance. The next goal is now to migrate NatCat to a grid infrastructure,
to make further computer resources accessible. This internship represents one step into
this direction.

2.3. Portfolio Tree
A portfolio is a hierarchical collection of policies, insured objects, and coverage types
arranged in a tree-like structure. The so-called portfolio tree is depicted in Figure 2.1 and
explained below. A site (L1) refers to an insured object. It might be covered by one or
several insurance contracts against various perils, e.g. physical destruction, business
interruption, etc. In this context, the term coverage (L0) defines the insurer’s financial
liability with respect to this particular object. A policy (L2) contains several sites and
specifies the details of the insurance contract. Finally, all policies are part of a portfolio
(L3), which represents the root of the so-called portfolio tree.

Figure 2.1 Example of a portfolio tree.

 5

2.4. Current Architecture
Figure 2.2 shows the current architecture of the NatCat application. It consists of a client
tier, a server tier, and a database tier.

2.4.1. Client Tier
The client tier consists of the hosts having the permission to invoke calculations. In
order to do so, a client submits a file to the server tier. Depending on the processing
state a user may perform different actions (import, encode, rate), which are then
processed by the server tier. Clients are not involved in the calculation process, they only
submit tasks and present results. The clients are programmed in J2SE 1.4 or 1.5.

2.4.2. Server Tier
The server tier consists of the hosts executing the calculation. After having received
input data from a client, they check the data for consistency, associate it with
geographical data, execute the calculation and store the data and results in the database.
This process is explained in more detail in the next section.
The NatCat server sources are programmed in J2EE 1.4. The code currently runs on top
of WebSphere 6.0 ND, the J2EE 1.4 compliant application server by IBM. It is not clear
yet if in a prospective grid infrastructure WebSphere will be suited to provide the
required middleware functionalities on all grid sites. Therefore, evaluating the
deployment of other products is under consideration.

2.4.3. Database Tier
The database tier is responsible for providing and storing calculation-related data. The
database hard- and software are relatively powerful: a dedicated 32-processor system at
Swiss Re and a dedicated two-processor or shared four-processor system at the
University, all running Oracle 9i. Nevertheless, earlier studies within the collaborative
research project [5,6] have shown that due to the large data amounts, the database’s
performance is one of the major factors limiting the scalability of NatCat.

2.4.4. Processes
The processes “import”, “encode”, and “rate” constitute the basic framework of the
NatCat application and are explained below.

2.4.4.1 Import
The import process is responsible for reading all relevant data from files and storing
them in the main database. Errors resulting from the import process are reported to the
client tier. Letter ‘I’ in Figure 2.2 represents the import process. The red arrows show the
data flow.

2.4.4.2 Encode
The encode process checks the imported data for consistency and associates them with
geographical data from a GIS database. Once again, the resulting data is stored in the
database and the client is notified in case of errors. The encode process is represented by
letter ‘E’ in Figure 2.2.

2.4.4.3 Rate
The rate process accesses the data produced by the encode process, calculates the
expected losses, and stores the results in the database. The rate process is the one that
performs the number crunching. It is by far the most time-consuming task, which

 6

explains why most of the optimization efforts are put into this part. Letter ‘R’ in Figure
2.2 represents the rate process. Note that “rate” and “calculate” are used interchangeably
in this report.

Figure 2.2 Architecture of the original application.

2.5. Prospective Architecture
The current architecture works fine for many calculations. However, it takes up to three
days to calculate results for bigger calculations, and there are even cases the system
cannot handle because they are too large. Since the scalability of the current architecture
is limited, another architecture must be found that is able to cope with future capacity
requirements, and if possible increases performance and scalability of the system. Figure
2.3 depicts a possible prospective architecture. The major differences with respect to the
current architecture are the additional grid tier and the modified process structure.

2.5.1. Client and Database Tier
While the client tier will basically remain the same, the database tier might undergo
several changes. The most important ones concern alterations or the redesign of the
database schema, integration of application logic into the database as well as the removal
of data redundancy.

2.5.2. Server Tier
The server tier will probably be altered significantly. One change under consideration is
to merge the import, encode, and rate processes to limit back-and-forth transfer with the
database [6]. However, the most important modification affecting the studies in this
internship is the plan to redesign the rate process in a way that allows for transparent
local or remote execution. The purpose of the corresponding grid tier is to reduce the
load on local nodes.
Another major change concerns the way data is handled in the system. To accelerate data
access, it will be necessary to decide which data must be stored in the database: In the

 7

current application, several intermediate results are stored as well, even though they have
never been used so far after the result has been calculated. Not storing them anymore
would reduce the amount of transferred and stored data. However, as it is currently not
known whether these intermediate results will ever be needed, it is unclear whether this
potential can be exploited. In addition, due to the current structure of the portfolio tree,
considerable amounts of data duplication have been identified in earlier phases of the
collaboration project [5]. To reduce these, additional restructuring of application and
database is required (cf. Section 2.5.1), which is currently developed and tested in a
prototype setup.

2.5.3. Grid Tier
The grid tier is introduced in order to unburden the server tier from some calculation
load. It might be used all the time, but it might just as well serve as a buffer that reduces
the load on the local nodes in case the capacity demand exceeds the one available on
local nodes. Details are not known yet because the interdependencies and performance
behavior of individual code and hardware parts are not sufficiently known yet, and also
policy issues for remote processing of data remain to be defined. It is clear though that
the grid tier will play a major role in the revised architecture.

Figure 2.3 Architecture of the prospective application.

 8

3. Goal
As outlined in Section 2.5, the NatCat code has to be restructured to make it suitable to
be run on a grid infrastructure. Such a transformation requires major architectural
changes, some of which have already been made while others are pending.
One important requirement that has to be fulfilled by NatCat rate jobs running on the
grid tier is that they should be independent from the presence of the database server, to
allow running in isolation. This reduces the dependence on the network speed and
increases the application’s reliability. Moreover, it raises hope for performance gains,
improved error resilience, and better means to control job and data security. As displayed
in Figure 2.3, such a setup makes it necessary to bundle all required and produced data
together with the corresponding rate job. The goal of this internship was to provide a
prototype solution for this issue.
The work was divided into several subtasks that could be accomplished independently.
The first task was to isolate data retrieval from the code performing the calculation. The
second task consisted of enhancing the database’s performance.

3.1. Query Isolation
The existing code allowed distributing work units among several machines. However, the
data associated with a work unit was only retrieved during the calculation process, which
led to a strong coupling between the calculating nodes and the database.
In order to loosen this coupling, work units had to be equipped with all necessary data
before being assigned to a node, resulting in a complete separation of data handling and
calculation. The main task of this internship was to realize this in the source code.

3.2. Query Optimization
Isolating the data retrieval from the calculation process opened possibilities to optimize
its performance. Since data was not retrieved on an as-needed basis anymore, it was
possible to merge several small queries to a single big query, resulting in diminished
overhead and higher performance.

 9

4. Implementation
This chapter describes the implementation of the novel data retrieval mechanism. The
focus lies on the isolation of database queries and the performance enhancements of the
database, which primarily consisted of replacing the legacy persistence layer with a new
one.

4.1. Query Isolation
In order to isolate queries a separate class named DataRetrieverImpl has been created
which is responsible for retrieving data and storing it in appropriate data structures. The
DataRetriever interface is shown in Figure 4.1.

public interface DataRetriever {

 /**
 * Retrieves the L3s and everything underneath
 */

public L3Array getL3Data(){};

 /**
 * Retrieves the L2s and everything underneath
 */

public L2Array getL2Data(){};

}

Figure 4.1 The DataRetriever interface.

The method getL3Data() returns an array of L3 objects including all subordinate data
in the portfolio tree. getL2Data() does the same but with L2 objects. The reason for
the method’s existence is the fact that L3 objects of bigger test cases cannot be held in
memory. In these cases, the L2 objects are retrieved and processed sequentially.
The actual implementation is not very spectacular; the task mainly consisted of moving
existing code parts from the calculation process into the newly created retriever class and
of implementing the functionality to wrap and unwrap the data objects (cf. Section 5.1).

4.2. Query Optimization
The original rating process used to fetch data on an as-needed basis, which resulted in
numerous database queries returning little data. Once the data retrieval had been isolated
from the rating process it was possible to merge several small queries in bigger ones
reducing the generated overhead.

4.2.1. The New Persistence Layer
Since it was likely that the existing persistence layer would be replaced in the near future,
there was no point in optimizing it. The database access classes were therefore rewritten
from scratch, paying particular attention to create a simple, understandable but yet
extensible design. The primary purpose was to extract the essential parts from the legacy
persistence layer and to put them into new classes such that developers would be able to
quickly read and understand them.

 10

The result of my efforts was a new persistence layer consisting of some 1’700 lines of
code, which is considerably less than the over 25’000 lines of code of the legacy
persistence layer. It must be said though that the newly created persistence layer only
contains the functionality required during the rating process. The import and encode
processes would have to be added. However, since adding queries requires just a few
lines of code, the code is unlikely to grow significantly.
Moreover, data in the legacy persistence layer was retrieved in chunks of fixed size,
which made it necessary to issue several queries against the database in order to restore
bigger objects. The goal was to get rid off this overhead. Additionally, the results of such
a query series were not stored in a single data structure but in as many data structures as
queries were executed, resulting in a higher number of data objects to be processed.

4.2.2. AbstractRetriever
AbstractRetriever constitutes the core class of the new persistence layer. It is
responsible for generating queries, establishing connections to the database, and
returning the result to the caller. The most important elements of AbstractRetriever
are depicted in Figure 4.2.

public abstract class AbstractRetriever {

abstract LinkedList getAttributes();

abstract String[] getTableNames();

String getConditionAttribute(){
 return “ID”;

}

abstract Object createResult(ResultSet rs) throws SQLException;

public Object retrieveObject(long[] ids) {
 //Implementation

}
}

Figure 4.2 The core methods in AbstractRetriever. Methods for assembling, executing, connecting, and
disconnecting from the database are left away as they are irrelevant for understanding the persistence layer
usage.

4.2.3. Usage
An example illustrates the usage of the new persistence layer. The structure of a typical
query as it appears in the NatCat code is shown in Figure 4.3.

SELECT FOO1, FOO2
FROM BAR1, BAR2
WHERE ID IN (1,4,7)

Figure 4.3 A simple SQL query.

It consists of the following four components:

• The list of attributes to be retrieved (FOO1, FOO2)
• The name of the table storing the respective data (BAR1, BAR2)
• The name of the attribute which must fulfill the query condition (ID)
• The query condition (IN (1,4,7))

 11

In order to create a new query a new class extending AbstractRetriever (cf. Figure 4.2)
must be created. AbstractRetriever exposes the following methods:

• getAttributes() returns a LinkedList containing the attributes to be
selected.

• getTableNames() returns the name of the table that contains the data.
• getConditionAttribute() returns the name of the attribute which must meet

the query condition. This method is not abstract as in the vast majority of the
cases the condition attribute is named ID.

• createResult(ResultSet rs) is the method which creates and assigns the
values to the data structure representing the data object.

• retrieveObject(long[] ids) is the method which initiates the retrieval
procedure.

The class corresponding to the query in Figure 4.3 looks as follows:

public Object ExampleRetriever extends AbstractRetriever {

LinkedList getAtrributes() {
 LinkedList attributes = new LinkedList();
 attributeNames.add(“FOO1”);
 attributeNames.add(“FOO2”);
 return attributeNames;

}

String[] getTableNames() {
 return new String[]{“BAR1”, “BAR2”};

}

Object createResult(){
 // Query-specific functionality to create the result
object
 return result;

}
}

Figure 4.4 The class corresponding to the query in Figure 4.3.

Retrieving an object from the database is very simple and completely transparent to the
caller of the method:

Object o = new ExampleRetriever().retrieveObject(new long[]{1,4,7});

Figure 4.5 Statement to retrieve data from the database

4.2.4. Functional Correctness
Getting a fine grasp of the inner workings of the legacy persistence layer was a tedious
task. It was a mixture of code fragments, manual database key comparisons, and intuitive
guesses that helped writing the new persistence layer.
Applying such an approach raises the question of whether the new persistence layer is
really equivalent to the legacy one. While there is no way to prove it, the probability that
the layers are actually equivalent is very high. This is because the application always
returns exactly one numerical value as a result, unless an exception is thrown at runtime.

 12

For the existing test cases the result is known in advance. A test is only successful if the
result matches the known result with of precision of 4 digits after the decimal point. In
some test cases, the values of several additional parameters must match the known ones
with the same precision.
The procedure therefore bears some resemblance with the calculation of the hash value
of a downloaded file, which is typically used to verify its integrity. It is possible, albeit
unlikely, that the result and the parameters exactly match the known ones by
coincidence. Much more likely are scenarios where the test cases are unknowingly chosen
such that some code parts are never executed or that the data contains special cases
where the bug does not occur, suggesting the code was correct, although it is not.

 13

5. Evaluation
In this chapter, the experimental results are presented and evaluated. The internship was
divided into two distinct phases, thus there are also two major measurement series.
Before going into further detail though, expectations towards the new code are
discussed.

5.1. Expectations
In the first phase of the internship, which mainly consisted of isolating queries, the
performance of NatCat is initially expected to decrease, mostly due to the following
reasons:

• The portfolio tree must now be traversed twice. While the data was previously
accessed during the rating process on an as-needed basis, retrieving all data
before starting the calculation requires the application to traverse the portfolio
tree twice: Once to retrieve the data and once to perform the calculation (cf.
Figure 5.1).

• The data must be wrapped and unwrapped. It cannot only be retrieved; it must
also be stored in a suitable data structure. Creating and allocating memory space
for this data structure as well as filling it during data retrieval and reading from it
during the calculation phase takes time (cf. Figure 5.1).

• Parallelism is reduced. Because the calculation only starts once the data has been
completely retrieved, the CPU is underutilized during data retrieval.

• The data must be written to disk and reread – and later, in a real grid scenario,
also transmitted over a wide-area network. Once the data is retrieved from the
database, it must be placed on a storage device where the nodes performing the
calculation reread the data in order to compute results.

Figure 5.1 In the original implementation, data retrieval and calculation are performed simultaneously
(left) while they are separated in the new one (right). For the sake of simplicity, L0 is not shown in the
portfolio tree.

Despite the mentioned drawbacks, there are good reasons to retrieve the data
beforehand, in particular:

• Parallelism can be regained. While the antecedent data retrieval leads to low CPU
usage, it is supposedly high during the calculation process. This might be
exploited by reading the data of the next calculation while the result of the
existing one is still being calculated. Because the next calculation can immediately
be started, the CPU usage is likely to remain high.

• Data can be retrieved more efficiently. Retrieving data only when it is needed
results in a considerable amount of database queries returning little data and
producing considerable overhead. Retrieving data beforehand allows for merging
such queries, resulting in fewer queries returning bigger amounts of data.

 14

• Data can be processed in isolation. While the calculation process is running, data
just needs to be read from and written to the local disk. This is both faster and
more reliable than accessing data via a wide-area network or even the Internet.
Furthermore, eliminating the necessity of a permanent connection to the
database server is expected to increase the performance, scalability, and security
of the system.

5.2. Experimental Results after Query Isolation
This section presents the details of the performance tests conducted after the first phase
of the internship.

5.2.1. Rating
As described in Section 5.1, a performance degradation was expected. Figure 5.2 shows
how long it took to rate four small and one medium test cases. (The application
configuration for this and all other timings can be found in Section 7.1).
The blue bars show the timings with the original code, the red ones the timings with the
modified code. As expected, the performance degraded. However, the difference
between the two code versions was small, raising hope that code optimizations would
eventually overcompensate the loss.

Figure 5.2 The above graph shows the performance of the original code (blue) and the one of the altered
code (purple).

5.2.2. Rating Details
The previous section showed the overall performance. For further optimizations it was
necessary to know how much time was spent on specific code parts.
Figure 5.3 shows the timings during the rate process. The blue bars represent the time
spent on retrieving data; the purple ones the duration of the actual calculation (excluding
post-rating).
Obviously, DLM cases are dominated by number crunching, as opposed to ALM cases.
The acronym DLM refers to test scenarios where precise location information is
available, while this is not the case in ALM scenarios. Therefore, in ALM scenarios some
approximations are required. The important thing to know is just that optimization
efforts focus on DLM scenarios, because they make up the majority of the large test
cases.

 15

Figure 5.3 The bars show the time it takes to retrieve the data (blue) and to calculate the result (purple).
Note that number crunching and data retrieval times do not accumulate to the total rating time. The
latter includes additional procedures, such as post-rating.

5.2.3. File Sizes
In many globally distributed applications the network bandwidth constitutes a major
bottleneck, hence the size of a work unit is of critical importance. Figure 5.4 shows the
size of serialized work units in four small and one medium test case. The blue bars
represent uncompressed files; the red ones were created using the GZIP compression
algorithm provided by the Java API.
The compressed files are significantly smaller than the uncompressed ones. An
interesting observation is the fact that creating compressed files is faster than
uncompressed ones, even for the small test cases. The performance penalty of writing a
larger file to disk is apparently more severe than the one of the compression.

Figure 5.4 Size of compressed and uncompressed serialized work units

The above results look promising. Even if the Internet is used to transmit work units to
external resources, the sizes of the compressed files are unlikely to have a significant
impact on the performance of the application. What is more, the files were created with
the Java default serialization. It is well possible that a customized serialization mechanism
produces even smaller amounts of data.

 16

5.2.4. Database Throughput
In earlier phases of the collaboration project [5] it was determined that reading data from
the database was one of the major performance bottlenecks. Measuring it precisely was
difficult though because data retrieval and calculation were intertwined. After having
isolated the code accessing the database this was not very difficult anymore. Running the
same test cases yielded the results depicted in Figure 5.5.

Figure 5.5 The chart shows the estimated average throughput of the database in the original
implementation.

For the estimation the new implementation was run and the time of the data retrieval as
well as the size of the serialized data file were measured. Due to the fact that the database
queries are identical to the ones in the original implementation, the throughput of the
implementations is approximately the same. The real throughput of the original
implementation is probably a little higher because antecedent data retrieval requires
additional data packaging (cf. Figure 5.1). However, the difference is assumingly small
(cf. Figure 5.2).
The performance was expected to be poor, somewhere in the one- or possibly the two-
digit MBit/s range. The upside of the fact that the actual performance is a lot worse is
the fact that this cannot only be caused by the database, which implies that there must be
a huge optimization potential in the code and the retrieval mechanism.

5.3. Experimental Results With The New Persistence Layer
This section presents the details of the performance tests conducted after the second
phase of the internship. Note that the new persistence layer makes use of WebSphere’s
connection pool, thus the following timings are directly comparable to ones presented in
the previous section.

5.3.1. Data Retrieval
Figure 5.6 compares the performance of the legacy persistence layer with the new one.
While the latter is faster in all test cases, the performance gain varies significantly
depending on the test case.

 17

Figure 5.6 Comparison of retrieval times of the legacy and the new persistence layer.

The exact values are shown in Table 5.1. The ALM cases yield the best results, reducing
the time to a mere 3% while in the worst case – the medium test case – “only” 20%
could be gained. It is difficult to say what this huge variation is caused by; profiling might
shed some light on this behavior though.

Test case Time Consumption (Legacy layer = 100%)
small_dlm_no_inuring 34.4 %
small_dlm_with_inuring 36.4 %
small_alm_no_inuring 2.6 %
small_alm_with_inuring 3.5 %
medium_dlm_with_inuring 80.2 %

Table 5.1 Time consumption of the new persistence layer compared to the legacy one.

It is important to note that the new persistence layer is basically an excerpt of the
essential parts of the legacy layer and thus follows the same retrieval strategy.
Consequently, the performance gain is primarily caused by the usage of more efficient
data structures, and enhanced object handling. Some minor changes have been made in
the queries though; however, they hardly scratch the surface of the performance gain
resulting from stringent optimization efforts (cf. Section 5.4).

5.3.2. Rating
Figure 5.7 shows the results of the rating part. On the one hand, it was expected that the
rating time would increase due to the necessity of unwrapping the data (cf. Section 5.1).
On the other hand, data retrieval is not chunked anymore, thus, the amount of objects
that must be processed is smaller (cf. Section 4.2.1).

 18

Figure 5.7 Comparison of the rating times with the legacy and the new persistence layer.

As depicted in Figure 5.7, the rating process is faster in the small test cases and slightly
slower in the medium test case. The difference is marginal though (cf. Table 5.1).

Test case Time Consumption (Legacy layer = 100%)
small_dlm_no_inuring 63.5 %
small_dlm_with_inuring 64.0 %
small_alm_no_inuring 64.3 %
small_alm_with_inuring 64.7 %
medium_dlm_with_inuring 106.4 %

Table 5.2 Time consumption of the new persistence layer compared to the legacy one.

5.3.3. Overall Processing Time
Figure 5.8 compares the timings of the complete rating process (including postrating).
The new persistence layer is slightly faster in all but one test case. It is surprising that the
overall processing time does not reflect the performance enhancements as clearly as one
would expect after having seen the previous results. WebSphere’s JIT compiler could
cause this because some processes (eg. postrating) still make use of the legacy persistence
layer, whose classes must be compiled although they are hardly ever used.

 19

Figure 5.8 Comparison of the overall processing time.

The exact values for the complete rating process are shown in Table 5.3.

Test case Time Consumption (Legacy layer = 100%)
small_dlm_no_inuring 90.9 %
small_dlm_with_inuring 86.6 %
small_alm_no_inuring 80.2 %
small_alm_with_inuring 100.9 %
medium_dlm_with_inuring 94.5 %

Table 5.3 Time comparison.

5.4. Query Analysis
The purpose of this section is to illustrate the current status of queries as well as some of
the remaining inefficiencies contained in the code by means of the medium test case.
In the medium test case a total of 125’070 queries would have been executed without any
optimizations. A minor code improvement reduced the amount to 100’452 (-19.7%).
This is the code underlying the measurements in Section 5.3.
It turns out that there is a tremendous amount of similar queries. Table 5.4 shows how
often queries differing only in the argument of the WHERE clause are executed.
Apparently, issuing the queries L to T over and over again retrieves the vast majority of
the data. Increasing the number of arguments is likely to result in a considerable
performance leap.

Query (cf. Section 7.2 for key) Amount
A – J 1
K 17
L, M 8’967
N, O, P, Q 8’968
R 10’708
S, T 17’935

Table 5.4 Execution frequency of queries

 20

In Section 5.3 it was shown that the performance is better in all but one test case.
However, the code did not make use of database hints, hence adding them would further
accelerate the retrieval process.
Further ways to improve the performance include multithreaded data retrieval, more
efficient handling of the database connection pool, reducing the scope of synchronized
methods, and the deployment of a library providing an associative storage accepting
primitive data types as keys.
Finally, in this study only four small and one medium test case have been analyzed. The
behavior of the new implementation with large test cases was not looked at. It thus
remains to be seen in particular how far the memory usage scales.

 21

6. Conclusion
In the course of the internship the data retrieval and rating processes had to be
separated. This has been achieved and proves that the two processes can indeed be
decoupled and run independently. Thus, it constitutes a first step towards a fully grid-
enabled application.
The legacy persistence layer has been replaced with a new one. The results clearly show
that it is faster in virtually all test cases, even though it is far from being fully optimized.
Some performance gains might be achievable with little effort.
Nevertheless, it is questionable whether that is the way to go. The simple reason is that
the creation, execution, and the composition of the result by the database will always
consume some time, no matter how stringently the queries are optimized. As a
consequence, even the performance of the best optimization will lag behind the one that
could be achieved by reading the data directly from a data file, as in that case no queries
would have to be executed at all.

 22

7. Appendix
This appendix contains the configuration settings that were used to measure the results.

7.1. Settings
The list below shows the configuration settings that were used to measure the
performance. For the sake of simplicity, only the values differing from the defaults and
chunk sizes are specified. Note that the new persistence layer never retrieves data in
chunks. Therefore, the respective settings only affect test cases that have been run with
the legacy persistence layer.

batch.save.chunk.size 100
cu.save.chunk.size 100
file.cache.active false
file.cache.purge.on.startup true
rate.cu.chunk.size 100
rate.dist.eventset.size.min 1
rate.dist.jobs.max 1
rate.dist.weight.min 0
rate.distribute true
rate.l1.chunk.size 100
rate.l2.chunk.size 100

Figure 7.1 The list shows the configuration settings used while measuring the application’s performance.

7.2. Queries
Key Query
A SELECT A.L3_ID, A.ID, A.RANK, A.REFERENCE, A.NAME, A.STATUS,

A.PERIL, A.TOTAL_TIV, A.ENCODED_TIV_SHARE, A.L1_COUNT,
A.ENCODED_L1_SHARE, A.L0_COUNT, A.ENCODED_L0_SHARE, A.CONDITION
FROM MSP_USERDATA.T_L2 A, MSP_USERDATA.T_PERIL_DATA B WHERE
A.L3_ID IN () AND A.PERIL=B.ID AND A.STATUS>0 AND B.PERIL='EQA'
ORDER BY A.ID

B SELECT COPULAMIXFACTOR, INTENSITYCOV, MAXCOVFACTOR FROM
MSP_EQA.T_LOSS_UNCERTAINTY_PARAM

C SELECT DISTRIBUTIONPERCENTILE, FREQUENCYSHARE, LOSSSAMPLENUMBER
FROM MSP_EQA.T_LOSS_UNCERTAINTY_SAMPLES

D SELECT ID, DEDUCTIBLE, LIMITID, COINSURANCE, UNDER_COV_AMOUNT
FROM MSP_USERDATA.T_CONDITION WHERE ID IN ()

E SELECT ID, L1_ID, COINSURANCE, COVERAGE_TYPE, RANK, REFERENCE,
STATUS, TSI, DEDUCTIBLE, LIMITID FROM MSP_USERDATA.T_CONDITION
WHERE L1

F SELECT ID, L3_ID, L2_ID, L1_ID, RANK, REFERENCE, NAME, RETYPE,
IS_SWISS_RE, INCEPTION, EXPIRATION, PRIORITY, NUM_REINST,
PER_RISK_LIMIT, OCC_LIMIT, ATTACH_PT, P_SHARE, TIV_WXL_L1 FROM
MSP_USERDATA.T_RE_CONDITION WHERE L2_ID IN ()

G SELECT ID, PERIL, DURATION, MIN_INTENSITY FROM
MSP_USERDATA.T_PERIL_DATA WHERE ID IN ()

H SELECT ID, TYPE, MINIMUM, STANDARD, MAXIMUM FROM
MSP_USERDATA.T_DEDUCTIBLE WHERE ID IN ()

I SELECT ID, TYPE, STANDARD FROM MSP_USERDATA.T_LIMIT WHERE ID IN
()

J SELECT RC.REFERENCE, RC.NAME, RC.PRIORITY, MIN(RC.ID),
MIN(RC.L3_ID), MIN(RC.L2_ID), MIN(RC.L1_ID), MIN(RC.RANK),
MIN(RC.RETYPE), MIN(RC.IS_SWISS_RE), MIN(RC.INCEPTION),
MIN(RC.EXPIRATION), MIN(RC.NUM_REINST), MIN(RC.PER_RISK_LIMIT),

 23

MIN(RC.OCC_LIMIT), MIN(RC.ATTACH_PT), MIN(RC.P_SHARE),
MIN(RC.TIV_WXL_L1) FROM MSP_USERDATA.T_L1 L1, MSP_USERDATA.T_L2
L2, MSP_USERDATA.T_L3 L3, MSP_USERDATA.T_RE_CONDITION RC WHERE
L3.ID IN () GROUP BY RC.REFERENCE, RC.PRIORITY, RC.NAME,
RC.RETYPE

K SELECT VULNCURVEID, INTENSITY, MDR, VARCOEFF, PPA FROM
MSP_VULNERABILITY.T_VULN_CURVE_VALUE WHERE VULNCURVEID IN ()

L SELECT ID, L1_ID, COINSURANCE, COVERAGE_TYPE, RANK, REFERENCE,
STATUS, TSI, DEDUCTIBLE, LIMITID FROM MSP_USERDATA.T_CONDITION
WHERE L1_ID IN () ORDER BY L1_ID

M SELECT ID, L3_ID, L2_ID, L1_ID, RANK, REFERENCE, NAME, RETYPE,
IS_SWISS_RE, INCEPTION, EXPIRATION, PRIORITY, NUM_REINST,
PER_RISK_LIMIT, OCC_LIMIT, ATTACH_PT, P_SHARE, TIV_WXL_L1 FROM
MSP_USERDATA.T_RE_CONDITION WHERE L1_ID IN ()

N SELECT HAZARD, SECOND_MODIFIER, CONDITION, ID, L2_ID, RANK,
REFERENCE, STATUS, L1_INFO_ID, L1_INFO_RANK, L1_INFO_REFERENCE,
IS_AGGREGATE, RISKS FROM MSP_USERDATA.T_L1 WHERE L2_ID IN ()
AND STATUS>0 ORDER BY ID

O SELECT ID, AGE, QUALITY, FLOOD_PROTECTION_LEVEL, BASEMENT FROM
MSP_USERDATA.T_SECOND_MODIFIER WHERE ID IN ()

P SELECT ID, DEDUCTIBLE, LIMITID, COINSURANCE FROM
MSP_USERDATA.T_CONDITION WHERE ID IN ()

Q SELECT ID, SOIL_CONDITION, DISTANCE_COAST, ROUGHNESS,
TOPO_INDEX, FLOOD_ZONE_NAME FROM MSP_USERDATA.T_HAZARD WHERE ID
IN ()

R SELECT ID, TICKETID, VULNCURVEID, VULNMOD, REPORTINGUNITID, TSI,
RISKS, EFF_RISKS, SCENARIOZONEID, RATINGZONEID,
CALCULATIONUNITID, PERILID, HAZARDINCREMENT, HAZARDFACTOR,
ALMVULNMOD, SHARED1, SHARED2, SHARED3, ADMIN0LOCID,
ISRESIDENTIAL, TOPOINDEX, PTHPARAM1, PTHPARAM2, PTHPARAM3,
PTHPARAM4, PTHPARAM5, MARSPVALUE FROM
MSP_USERDATA.T_SRX_CALCULATION_UNIT WHERE REPORTINGUNITID IN ()

S SELECT ID, TYPE, MINIMUM, STANDARD, MAXIMUM FROM
MSP_USERDATA.T_DEDUCTIBLE WHERE ID IN ()

T SELECT ID, TYPE, STANDARD FROM MSP_USERDATA.T_LIMIT WHERE ID IN
()

 24

8. Bibliography
[1] Intel Corporation. Moore’s Law. http://www.intel.com/technology/mooreslaw,

June 2007. Retrieved: June 14, 2007.
[2] Wikipedia. Mooresches Gesetz – Wikipedia, die freie Enzyklopädie.

http://de.wikipedia.org/wiki/Mooresches_Gesetz, 2007. Retrieved: June 14,
2007.

[3] Distributed Computing for Reinsurance related calculations – Design,
Algorithms and Runtime experience. http://www.research-
projects.uzh.ch/p8487.htm, March 2007. Retrieved: September 20, 2007.

[4] Natural Catastrophes and Reinsurance, Peter Zimmerli et al.,
http://www.swissre.com/resources/15a16b80462fc16c83aed3300190b89fvNat_
Cat_en.pdf, April 2003. Retrieved: May 2, 2007.

[5] Internal Project Documentation.
[6] Natural Catastrophe Modeling: Enhancement and Extension of a Preexisting

Model, Mark Monroe, Master of Science Thesis, Institute of Environmental
Sciences, University of Zurich, July 2007.

